The Existence and Uniqueness of Weak Solutions for Precipitation Fronts: a Novel Hyperbolic Free Boundary Problem in Several Space Variables

نویسندگان

  • ANDREW J. MAJDA
  • PANAGIOTIS E. SOUGANIDIS
چکیده

The determination of the large scale boundaries between moist and dry regions is an important problem in contemporary meteorology. These phenomena have been addressed recently in a simplified tropical climate model through a novel hyperbolic free boundary formulation yielding three families (drying, slow moistening, and fast moistening) of precipitation fronts. The last two wave types violate Lax’s shock inequalities yet are robustly realized. This formal hyperbolic free boundary problem is given here a rigorous mathematical basis by establishing the existence and uniqueness of suitable weak solutions arising in the zero relaxation limit. A new L-contraction estimate is also established at positive relaxation values. 0. Introduction The goal here is to prove the existence and uniqueness of weak solutions to a novel hyperbolic free boundary value problem in several space variables that has emerged recently in the analysis of precipitation fronts in the large scale tropical atmosphere ([FMP], [SM], [PFM], [KM1], [KM2]). Precipitation fronts are the boundaries between the zones of extremely moist air (with constant precipitation) such as over the Indonesian marine continent, the Indian ocean, and Western Pacific, and the zones of extremely dry air in the tropics and subtropics that occur over areas such as the Galapagos islands at the equator or the Arabian peninsula in the subtropics. An important practical question in contemporary meteorology for long range weather prediction and climate change projections is what determines the boundaries of the precipitating fronts as well as their evolution in time. Such assessments are performed, for example, by the Intergovermental Panel for Climate Change (IPCC) by running extremely complex general computer models called GCM’s. An important practical issue with the GCM’s is how they treat moisture and what type of moisture waves do they (1) Department of Mathematics and Climate Atmosphere Ocean Science, Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA email: [email protected]. (2) Partially supported by the National Science Foundation and the Office of Naval Research. (3) Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA email: [email protected]. (4) Partially supported by the National Science Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

Existstence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation

In this paper we investigate a kind of boundary value problem involving a fractional differential equation.  We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...

متن کامل

A novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients

This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...

متن کامل

Large Scale Dynamics of Precipitation Fronts in the Tropical Atmosphere: a Novel Relaxation Limit

A simplified set of equations is derived systematically below for the interaction of large scale flow fields and precipitation in the tropical atmosphere. These equations, the Tropical Climate Model, have the form of a shallow water equation and an equation for moisture coupled through a strongly nonlinear source term. This source term, the precipitation, is of relaxation type in one region of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009